On Ricci type identities in manifolds with non-symmetric affine connection

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Ricci Type Identities in Manifolds with Non-symmetric Affine Connection

In [18], using polylinear mappings, we obtained several curvature tensors in the space LN with non-symmetric affine connection ∇. By the same method, we here examine Ricci type identities.

متن کامل

Spaces with Non-symmetric Affine Connection

The beginning of the study of non-symmetric affine connection spaces is especially in relation with the works of A. Einstein on United Field Theory (UFT). The paper is a short survey of the development of the theory of these spaces. AMS Mathematics Subject Classification (2000): 53C25, 53A45, 53B05

متن کامل

On pseudo cyclic Ricci symmetric manifolds admitting semi-symmetric metric connection

The object of the present paper is to investigate the applications of pseudo cyclic Ricci symmetric manifolds admitting a semi-symmetric metric connection to the general relativity and cosmology.

متن کامل

On Φ-ricci Symmetric Kenmotsu Manifolds

The present paper deals with the study of φ-Ricci symmetric Kenmotsu manifolds. An example of a three-dimensional φ-Ricci symmetric Kenmotsu manifold is constructed for illustration. AMS Mathematics Subject Classification (2000): 53C25

متن کامل

Ricci Type Identities for Non-basic Differentiation in Otsuki Spaces

In the Otsuki spaces one uses non-symmetric connections: one for contravariant and other for covariant indices. Also, we have two kinds of covariant differentiation-basic and non-basic. In the present work we investigate the Ricci type identities and curvature tensors for the non-basic differentiation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publications de l'Institut Mathematique

سال: 2013

ISSN: 0350-1302,1820-7405

DOI: 10.2298/pim1308205m